Adaptive SVM for Data Stream Classification
نویسندگان
چکیده
منابع مشابه
Detecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملSubject Specific Stream Classification Preprocessing Algorithm for Twitter Data Stream
Micro-blogging service Twitter is a lucrative source for data mining applications on global sentiment. But due to the omnifariousness of the subjects mentioned in each data item; it is inefficient to run a data mining algorithm on the raw data. This paper discusses an algorithm to accurately classify the entire stream in to a given number of mutually exclusive collectively exhaustive streams up...
متن کاملA New Classification Algorithm for Data Stream
Associative classification (AC) which is based on association rules has shown great promise over many other classification techniques on static dataset. Meanwhile, a new challenge have been proposed in that the increasing prominence of data streams arising in a wide range of advanced application. This paper describes and evaluates a new associative classification algorithm for data streams AC-D...
متن کاملClassifier Ensemble for Uncertain Data Stream Classification
Currently available algorithms for data stream classification are all designed to handle precise data, while data with uncertainty or imperfection is quite natural and widely seen in real-life applications. Uncertainty can arise in attribute values as well as in class values. In this paper, we focus on the classification of streaming data that has different degrees of uncertainty within class v...
متن کاملPositive Unlabeled Learning for Data Stream Classification
Learning from positive and unlabeled examples (PU learning) has been investigated in recent years as an alternative learning model for dealing with situations where negative training examples are not available. It has many real world applications, but it has yet to be applied in the data stream environment where it is highly possible that only a small set of positive data and no negative data i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: South African Computer Journal
سال: 2017
ISSN: 2313-7835,1015-7999
DOI: 10.18489/sacj.v29i1.414